Executive Summary
The ICS project provides the solution to the Waste, Water and the Sewage systems through the provision of remote and local control of the movement of the turbulence of the liquid and aqueous solutions. The ICS system incorporates the combination of different integrated systems that control pressure regulates the speed as well as controlling the gate valves in water catchment areas. The ICS system implements the SCADA technology to take the digital management and control of the wastewater and the sewage. The SCADA technology applies the sensor approach methodology whereby the sensor mechanism gets involved in managing and controlling the intake and the pumps used at the various points in the industrial system. The gadgets controlled include the water pumps the distributors and the purifying centers. The SCADA automates the process of the water supply to enhance proportional distribution of water in industries, factories, urban centers, rural areas, the domestic utilization and the agricultural operations like irrigation. The ICS-SCADA system gets applied in the Waste and Sewage system control and disposal. The SCADA systems monitor the discrete data and information concerning the entry of the waste material within the conduit pipes. The applications of the SCADA in the ICS include the pressure hydraulic pumps utilized in the boreholes gas and oil distributing industries.
ICS Industry Architecture Being Designed
The ICS system shall incorporate the utilization of the hardware and the software integration of materials and components. The structure and the design of the ICS-SCADA system shall include the user interface architectural design, the backend and the front end operation interface. The ICS-SCADA systems architecture incorporates the relational and the non-relational database design. The design of the ICS-SCADA control and management structure shall implement the three tires and the two tire client-server based systems to ensure multiple computer-based operations. The system hardware and software components include the dedicated Remote Terminal Units (RTU) and the Radio Telemetry Units for running and controlling the control algorithms for the flow control (Brodsky, & Radvanovsky, 2011). The architecture also incorporates the input and the output systems for the displaying of the graphics, charts and diagrams for the monitored and analyzed values. The video display monitors and the telnet oriented video conferencing system shall get embedded in different terminals to enhance the remote and local troubleshooting and diagnosing of the entire system. The ICS-SCADA system shall incorporate the electromagnetic field sensors for the detection of flaws and dangers imposed within the system to relay the alarms and notifications to end users. The system architecture shall incorporate the installation of the storage devices interlinked with the data and information repository backup systems. The storage system shall implement the VMware cloud computing system to facilitate the storage of data and information for the future decision making. The ICS-SCADA system architecture shall take into consideration the installation and embedding of the artificial intelligent systems to enhance big data analysis as well as data mining and data warehousing for the waste, water, and the sewage control.
1. Overview
The SCADA project shall implement the Redundant Fiber Optic and the Ethernet network. The system shall use the Node system of linking the World Wide Web interface. The proposed SCADA system within the Waste, Water and the Sewage system shall involve the replacement of the Unix SCADA systems with the improved redundant SCADA systems. The project team shall design a comprehensive system that incorporates the mesh network topology. The network topology shall link over 5000 data points using the SCADA System and connect the complete installation and integration of the control systems (Brodsky, & Radvanovsky, 2011).
2. Statement of Need
The government and the water treatment center shall provide the solution to the general public industries and the agricultural sectors through the installation of the water treatment points and plants in different stages. The current problem of impure water requires the application of the sewers and the pump stations in the water treatment and catchment areas. The solution on the waste dumping and flow require the installation of the waste and water treatment plant at various points of water flow. The sewage control and management problem require the implementation of the ICS-SCADA sludge treatment plant in the urban and the industrial areas (Pramod, et al…, 2013). The various treatment points require monitoring of flow turbulence to regulate the speed and pressure of the materials on the transit network.
3. Detailed Description
The ICS-SCADA system shall incorporate the operational interfaces that gather and conduct the entire system control at the various routes and the section of the interface. The operational strategies shall incorporate the implementation of the SCADA Human Machine Interface (HMI) (Dzung, et al…, 2005). The system shall get embedded to the network terminals and the links to facilitate easier reading and interpretation of data and information. The system shall apply the simplified user capabilities over the entire system that guarantee operational and implementation friendly.
ICS Network Architecture
The main physical and logical devices implemented in the ICS-SCADA system involve the processors, the controllers, and the RTU’s. The entire system shall incorporate the connection of the devices via the neutral fiber optic and the Ethernet network. The processing unit shall manage and control the input and the output materials within the SCADA systems. The controllers shall include the Programmable Logic Control (PLC) responsible for automation of observing and analyzing of data and information (IEEE Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants, 1998). PLC allows easy programming of different applications. The Physical Control Systems (PCS) controls the movement of materials by regulating the speed and pressure. The Remote Terminal Units (RTU’s) have the responsibility for facilitating synchronization between pumps and the sensor mechanisms. The RTU’s adjusts the data and information according to the analysis within the system.